

拓扑学笔记

作者: 吕浩哲 (Lucas Shen) 时间: September 11, 2024

封面: https://www.pixiv.net/artworks/100631860

目录

第1章	拓扑空间与连续性			
1.1	拓扑空间	1		
	1.1.1 拓扑基	3		
	1.1.2 乘积拓扑	4		
	1.1.3 序拓扑	5		
1.2	连续映射	5		
	1.2.1 同胚	7		
		8		
2.1	分离公理	8		
	2.1.1 分离公理间的关系	9		
2.2	•//	10		
	1 2 4 4 4	10		
		10		
	2.2.3 第二可数空间	11		
	2.2.4 Sorgenfrey 拓扑	13		
2.3	Urysohn 引理及其应用	13		
	2.3.1 Urysohn 引理	13		
	2.3.2 Tietze 扩张定理	15		
	2.3.3 Urysohn 度量化定理	15		
2.4	紧致性	17		
	2.4.1 度量空间中的紧性	17		
	2.4.2 Hausdorff 空间中的紧性	18		
	2.4.3 乘积空间的紧性	19		
	2.4.4 其它紧性	20		
2.5	连通性与道路连通性	21		
		21		
	· - · - · -	24		
第3章	商空间与闭曲面	26		
3.1	144141	26		
	3.1.1 常见闭曲面	26		
	3.1.2 商拓扑与商映射	26		
	3.1.3 诱导拓扑与余诱导拓扑	29		
3.2	拓扑流形与闭曲面	30		
	3.2.1 拓扑流形	30		
	3.2.2 闭曲面	31		
	3.2.3 贴空间与连通和	31		
	3.2.4 闭曲面分类定理	32		
tota a bi	ET IA LAND LUDI	. .		
	· · · · · · · · · · · · · · · · · · ·	34		
4.1	同伦	34		

4.1.1	映射的同伦	34	
4.1.2	拓扑空间的同伦	36	
道路同]伦与基本群	38	
4.2.1	道路同伦	38	
4.2.2	基本群	39	
4.2.3	同伦不变性	40	
基本群	的计算	41	
4.3.1	$S^n(n \geqslant 2)$ 的基本群	41	
4.3.2	S^1 的基本群 \dots	41	
4 基本群理论的应用			
Van-K	ampen 定理	44	
4.5.1	群的自由积	44	
4.5.2	Van-Kampen 定理	45	
4.5.3	Van-Kampen 定理的应用	46	
覆叠空	· 间	51	
		51	
5.1.1		52	
5.1.2	V-7.7.2 —	55	
5.1.3	覆叠空间的同构	56	
泛覆叠		57	
5.2.1		57	
5.2.2	泛覆叠空间	57	
覆叠变	E换与正则覆叠空间	59	
5.3.1	覆叠变换	59	
5.3.2	正则覆叠空间	60	
覆叠映	· · ·射与群作用	61	
应用.		62	
补充内	1	63	
		63	
•	,	63	
		64	
	•	64	
		66	
		66	
		67	
	4.1.2 届 4.2.1 4.2.2 4.2.3 基 4.3.1 4.3.2 基 Van-K 4.5.1 4.5.2 4.5.3 覆叠 5.1.1 5.1.2 5.1.3 覆 15.2.2 叠 17.2 5.2.2 叠 17.3 元	4.1.2 拓扑空间的同伦 道路同伦与基本群 4.2.1 道路同伦 4.2.2 基本群 4.2.3 同伦不变性 基本群的计算 4.3.1 S ⁿ (n≥2)的基本群 4.3.2 S ¹ 的基本群 基本群理论的应用 Van-Kampen 定理 4.5.1 群的自由积 4.5.2 Van-Kampen 定理 4.5.3 Van-Kampen 定理 4.5.1 提升定理 5.1.1 提升定理 5.1.2 一般提升的存在性 5.1.3 覆叠空间 5.2.1 半单连通与局部半单连通 5.2.1 平单连通与局部半单连通 5.2.2 泛覆叠空间 5.2.2 泛覆叠空间 5.3.1 覆叠变换与正则覆叠空间 5.3.1 覆叠变换与正则覆叠空间 5.3.1 覆叠变换 5.3.2 正则覆叠空间 图卷更映射与群作用 应用 补充内容 Tychonoff 定理 A.1.1 定理的证明与选择公理 A.1.1 三种拓扑	

第1章 同调论

附录 A 补充内容

A.1 Tychonoff 定理

A.1.1 定理的证明与选择公理

根据定义, 乘积拓扑由如下子基生成

$$S = \bigcup_{\alpha} \{ \pi_{\alpha}^{-1}(U_{\alpha}) : U_{\alpha} \in \mathcal{T}_{\alpha} \}, \tag{A.1}$$

因此可以借助 Alexander 子基定理证明 Tychonoff 定理.

定理 A.1 (Alexander 子基定理)

(X,T) 是紧的当且仅当其任意子基覆盖有有限子覆盖.

证明 【Tychnoff 定理的证明】设 $\mathscr{A} = \{\pi_{\alpha}^{-1}(U) : U \in \mathscr{A}_{\alpha}\} \ \, \forall \ \, X = \prod_{\alpha} X_{\alpha} \ \, \text{的子基覆盖,其中 } \mathscr{A}_{\alpha} \subset \mathcal{T}_{\alpha} \ \, \forall - \chi \in \mathcal{T}_{\alpha} \}$ 开集,首先存在 α_0 使得 \mathscr{A}_{α_0} 的覆盖,否则

$$\forall \alpha, X_{\alpha} \setminus \bigcup_{U \in \mathscr{A}_{\alpha}} U \neq \emptyset \Longrightarrow \prod_{\alpha} (X_{\alpha} \setminus \bigcup_{U \in \mathscr{A}_{\alpha}} U) \neq \emptyset, \tag{A.2}$$

说明 \mathscr{A} 不是 X 的覆盖,矛盾 X_{α_0} 的紧性说明 \mathscr{A}_{α_0} 有有限子覆盖 $\{U_1, \dots, U_m\}$,因此 $\{\pi_{\alpha_0}^{-1}(U_1), \dots \pi_{\alpha_0}^{-1}(U_m)\}$ 是 \mathscr{A} 的有限子基覆盖,即得.

下面证明 Alexander 子基定理, 其证明需要用到 Zorn 引理.

证明 【Alexander 子基定理的证明】假设 X 非紧,但其任意子基覆盖都有有限子覆盖,下面通过 Z orn 引理构造 - 个无有限子覆盖的子基覆盖. 令

$$\boxed{ |A| = \{ \mathscr{A} \subset \mathcal{T} : \mathscr{A} \to X \text{的开覆盖但无有限子覆盖} \} \subset 2^{2^{2^{X}}}, \tag{A.3} }$$

则它是一个集合包含关系下的偏序集,且X非紧保证它非空,取其全序子集 \mathfrak{K} ,则

- 1. $\mathscr{E} = \bigcup_{\mathscr{A} \in \mathscr{A}} \mathscr{A} \subset \mathcal{T}$.
- 2. *ℰ* 为 *X* 的开覆盖.
- 3. 8 为 系的一个上界.
- 4. $\mathscr{E} \in \mathbb{A}$, 若不然,则其存在有限子覆盖 $\{A_1, \dots, A_n\}$,并且存在 \mathscr{A}_i 使得 $A_i \in \mathscr{A}_i$,而 \mathfrak{K} 为全序集,因此存在 $k \in \{1, \dots, n\}$ 使得每个 $\mathscr{A}_i \subset \mathscr{A}_k$,即得 \mathscr{A}_k 有有限子覆盖,矛盾.

因此根据 Zorn 引理, $\boxed{ \text{ | |} }$ 有极大元 \mathscr{A} . 对于子基 \mathscr{S} ,下证 $\mathscr{S} \cap \mathscr{A}$ 为 X 的开覆盖,则一方面它必有有限子基覆盖,但另一方面它无有限子覆盖,即得矛盾.

对任意 $x \in X$, 存在 $A \in \mathcal{A}$ 使得 $x \in A$, 根据子基的定义, 存在 $S_1, \dots, S_m \in \mathcal{S}$ 使得 $x \in S_1 \cap \dots \cap S_m \subset A$, 下证存在 $1 \le k \le m$ 使得 $S_k \in \mathcal{A}$, 即得 $x \in S_k \in \mathcal{S} \cap \mathcal{A}$.

若不然,则对每个 k 都有 $\mathscr{A} \subset \mathscr{A}_k := \mathscr{A} \cup \{S_k\}$,根据 \mathscr{A} 的极大性可知 $\mathscr{A}_k \notin [\Lambda]$,因此它有有限子覆盖 $\{S_k, A_{k,1}, \cdots, A_{k,j(k)}\}$,故

$$X = \bigcap_{k=1}^{m} (S_k \cup A_{k,1} \cup \dots \cup A_{k,j(k)}) = (S_1 \cap \dots \cap S_m) \cup (\bigcup_{k,j} A_{k,j}), \tag{A.4}$$

因此 $\{A, A_{k,j}: 1 \le k \le m, 1 \le j \le j(k)\}$ 是 \mathscr{A} 的有限子覆盖,矛盾.

事实上,借助 Tychonoff 定理可以证明选择公理,又由于选择公理可证 Alexander 子基定理,因此三者是等价的.

命题 A.1 (Tychonoff 定理蕴含选择公理)

若 Tychonoff 定理成立,则对一族非空集合 $\{X_{\alpha}\}$ 有 $\prod_{\alpha} X_{\alpha} \neq \emptyset$.

证明 设 $\widetilde{X}_{\alpha} = X_{\alpha} \cup \{\infty_{\alpha}\}$,赋拓扑 $\widetilde{T}_{\alpha} = \{\emptyset, X_{\alpha}, \{\infty_{\alpha}\}, \widetilde{X}_{\alpha}\}$,则 \widetilde{X}_{α} 是紧空间(可以看作是平凡拓扑的一点紧化),由 Tychonoff 定理, $X = \prod_{\alpha} \widetilde{X}_{\alpha}$ 是紧集,并且 $\{\pi_{\alpha}^{-1}(X_{\alpha})\}$ 是 X 中的一族闭集,且任意交

$$\bigcap_{i=1}^{k} \pi_{\alpha_i}^{-1}(X_{\alpha_i}) \supset X_{\alpha_1} \times \dots \times X_{\alpha_k} \times \prod_{\alpha \neq \alpha_1, \dots, \alpha_k} \{\infty_{\alpha}\}$$
(A.5)

非空,由其紧性可知 $\bigcap_{\alpha} \pi_{\alpha}^{-1}(X_{\alpha}) \neq \emptyset$,而该集合中的任意元素都是 $\prod_{\alpha} X_{\alpha}$ 中的元素,得证.

上面证明的巧妙之处在于向每个集合添加了一个点 ∞_{α} , 否则说明 $\pi_{\alpha}^{-1}(X_{\alpha})$ 的"任意有限交非空"会产生循环论证.

A.1.2 Tychonoff 定理的应用

命题 A.2

可数多个列紧空间的乘积仍然是列紧的.

证明 考虑 $X^{\mathbb{N}}$ 中的一列元素 $\{a^n\}$, 则 $a^n = (a_1^n, a_2^n, \cdots)$ 为 X 中的序列. 所有 $\{a_1^n : n \in \mathbb{N}\}$ 构成一个序列,X 的 列紧性保证了 $\{a_1^n\}$ 存在子列 $a^{n(1,i)}$ 使得 $a_1^{n(1,i)}$ 收敛到 a_1^{∞} , 对 $a_2^{n(1,i)}$ 使用列紧性可知存在 $a^{n(1,i)}$ 的子列 $a^{n(2,i)}$ 使得 $a_2^{n(2,i)}$ 收敛到某个 a_2^{∞} , 重复这里过程可得方阵 $a^{n(i,j)}$, 取对角线 $a^{n(i,i)}$ 可知它是 $\{a^n\}$ 在乘积拓扑(或者说逐点收敛拓扑下的收敛子列).

借助 Tychonoff 定理可以给出紧致性与列紧性不等价的反例.

例 A.1 紧 \Rightarrow **列紧** 根据定理可知 ($[0,1]^{[0,1]}$, \mathcal{T}_{prod}) = ($\mathcal{M}([0,1],[0,1])$, $\mathcal{T}_{p.c.}$) 为紧空间,但它不是列紧的. 定义 $f_n:[0,1]\to[0,1]$ 为将 x 映为其二进制表示的第 n 为的映射,下证其无收敛子类,对任意子列 { f_{n_k} },取 x_0 满足其二进制的 n_{2k} 位为 0, n_{2k+1} 位为 1, 则

$$f_{n_{2k}}(x_0) = 0, f_{n_{2k+1}}(x_0) = 1,$$
 (A.6)

因此它在 x₀ 处不收敛, 故不是逐点收敛的.

例 A.2 列紧 \neq **紧** 设 A 为 ($\mathcal{M}([0,1],[0,1])$, $\mathcal{T}_{p.c.}$) 的由仅在可数个点非零的函数构成的子集,则它列紧,但非紧. 首先对 A 中任意点列 $\{f_n\}$,集合 $S = \{x : \exists n, s.t. f_n(x) \neq 0\}$ 是可数集,在考虑其逐点收敛情形时,可认为 $f_n \in [0,1]^S$,但 $[0,1]^S$? C 是列紧的,因此 f_n 有收敛子列.

其次对任意 $t \in [0,1]$,记 $A_t = \{f \in A : f(t) = 1\}$,则 $\{A_t\}$ 为一族闭集,并且其任意有限并非空,因此 $\bigcap_{t \in [0,1]} A_t \neq \emptyset$,但根据定义这是不可能的.

A.2 拓扑群

定义 A.1 (拓扑群)

称群 G 为拓扑群, 若它同时具有群和拓扑空间的结构, 并且乘法运算与求逆运算

$$\mu: (x,y) \mapsto xy, \quad \nu: x \mapsto x^{-1}$$
 (A.7)

都是连续的.

定义 A.2 (拓扑群同构)

设 G,H 为拓扑群,若 $\varphi:G\to H$ 既是群同态也是连续映射,则称之为连续同态,若其逆存在且也为连续映射,则称 φ 为同构以及两个拓扑群同构.

定义 A.3 (齐性空间)

称拓扑空间 X 是齐性的, 若对任意 $a,b \in X$, 存在 X 的同胚将 a 映为 b.

命题 A.3

拓扑群是齐性空间.

证明 设 $r_s: G \to G, r_s(x) = xs, l_s: G \to G, l_s(x) = sx$ 分别为右乘与左乘映射,则它们是拓扑群的自同构 (同胚),故命题显然.

命题 A.4

设G为拓扑群,A,B为G的子集,则

- 1. \dot{A} $\dot{A$
- 2. 若 A 为开集,则 AB, BA 都是开集.
- 3. 若 A 为闭集, B 为有限集, 则 AB, BA 都是闭集.
- 4. 若 A, B 都是紧集,则 AB 是紧集.

证明

- 1. 注意到 r_x, l_x 为同胚.
- 2. 显然.
- 3. 显然.
- 4. 由于 $A \times B$ 为 $G \times G$ 的紧集, 因此 $AB = \mu(A \times B)$ 为紧集.

对于拓扑群而言,首要的是刻画其中的邻域,或者说邻域基/拓扑基. 由于拓扑群是齐性空间,因此只需讨论单位元 e 的邻域基.

命题 A.5

设 罗 为拓扑群 G 的单位圆的邻域基,则

- 1. 设 $U, V \in \mathcal{F}$,则存在 $W \in \mathcal{F}$ 使得 $W \subset U \cap V$.
- 2. 设 $a \in U \in \mathscr{F}$,则存在 $V \in \mathscr{F}$ 使得 $Va \subset U$.
- 3. 设 $U \in \mathcal{F}, x \in G$,则存在 $V \in \mathcal{F}$ 使得 $x^{-1}Vx \subset U$.
- 4. 设 $U \in \mathcal{F}$,则存在 $V \in \mathcal{F}$ 使得 $V^{-1}V \subset U$.
- 5. 设 $U \in \mathcal{F}$,则存在 $V \in \mathcal{F}$ 使得 $V^{-1} \subset U$.
- 6. 设 $U \in \mathcal{F}$,则存在 $W \in \mathcal{F}$ 使得 $WW \subset U$.

证明

- 1. 显然
- 2. 由于 Ua^{-1} 是包含 e 的邻域,因此必然包含 $V \in \mathcal{F}$,即得 $Va \subset U$.
- 3. 过程同 2.
- 4. 考虑连续映射 $\varphi(a,b)=a^{-1}b$,U 为开集说明 $\varphi^{-1}(U)$ 为开集,并且 $(e,e)\in\varphi^{-1}(U)$,因此存在 $A,B\in\mathscr{F}$ 使得 $A\times B\subset\varphi^{-1}(u)$,并且存在 $V\in\mathscr{F}$ 使得 $V\subset A\cap B$,因此 $V\times V\subset\varphi^{-1}(U)$,即得 $V^{-1}V\subset U$.
- 5. 根据上一条,存在 $V \in \mathcal{F}$ 使得 $V^{-1}V \subset U$,而 $e \in V$,因此 $V^{-1} \subset V^{-1}V \subset U$.
- 6. 过程同 4.

事实上,上述性质完全决定了拓扑群的基.

命题 A.6

设 G 为抽象群, \mathscr{F} 为 G 的非空子集,每个集合都包含 e,若 \mathscr{F} 满足上述命题中的 1,2,3,4,则 G 中存在 唯一拓扑,它以 \mathscr{F} 为 e 的邻域基,使 G 为拓扑群.

证明 令 $\mathcal{B} = \{Ug : U \in \mathcal{F}, g \in G\}$, 只需证明 \mathcal{B} 为拓扑基. 首先显然 $\bigcup_{B \in \mathcal{B}} B = G$, 根据齐性,设 $Ua, Vb \in \mathcal{B}, e \in Ua \cap Vb$,则由 2,存在 U', V' 使得

$$e \in U' \subset Ua, \quad e \in V' \subset Vb,$$
 (A.8)

再由 1 可得 $W \in \mathscr{F}, W \subset U' \cap V'$,即得 $e \in W \subset Ua \cap Vb$,因此 $Ua \cap Vb$ 实际上是 \mathscr{B} 中一些集合的并,故 \mathscr{B} 为拓扑基.

下面说明 $\varphi(b,c) = b^{-1}c$ 为连续映射,即对任意 $Ua \in \mathcal{B}$, $\varphi^{-1}(Ua)$ 为 $G \times G$ 中的开集,设 $b^{-1}c = ua \in Ua$,则存在 $V \in \mathcal{F}$ 使得 $Vu \subset U$,存在 $W \in \mathcal{F}$ 使得 $b^{-1}Wb \subset V$,存在 $Z \in \mathcal{F}$ 使得 $Z^{-1}Z \subset W$,因此

$$b^{-1}Z^{-1}Zbua \subset b^{-1}Wbua \subset Vua \subset Ua \Rightarrow (Zb)^{-1}(Zc) \subset Ua, \tag{A.9}$$

命题 A.7

若拓扑群 G 是 T1 的, 那么它也是 T2,T3 的.

证明 只需证明 T3, 而根据齐性只需证明 e 与不包含 e 的闭集 F 可分离. 由于 F^c 为 x 的开邻域, 因此存在开集 V 使得 $e \in V^{-1}V \subset F^c$, 因此 $V^{-1}V \cap F = \emptyset$, 说明 $V \cap VF = \emptyset$, 因此 V, VF 即为分离 x, F 的无交开集.

命题 A.8

局部可数紧 T3 空间是第二纲集.

注 局部可数紧是指对任意 x,存在其邻域 U 使得 \overline{U} 为可数紧集. 该命题对局部紧 Hausdorff 空间也成立. 证明 假设存在可数个稠密开集 D_n 使得 $\bigcap_{n=1}^{\infty} D_n = \emptyset$,首先取开集 $U_0 \subset X$ 使得 $\overline{U_0}$ 为紧集,则对任意 $x \in U_0 \cap D_1$,根据 T3 可知存在开集 V 使得

$$x \in V \subset \overline{V} \subset D_1, \tag{A.10}$$

令 $U_1 = V \cap U_0$,则 $\overline{U_1} \subset D_1 \cap \overline{U_0}$,同理可得非空开集 U_2, U_3, \cdots 满足

$$\overline{U_{n+1}} \subset D_{n+1} \cap \overline{U_n} \Rightarrow U_{n+1} \subset U_n, \tag{A.11}$$

因此 $\emptyset \neq \bigcap_{n=0}^{\infty} \overline{U_n} \subset \bigcap_{n=0}^{\infty} D_n$,矛盾.

推论 A.1

设 G 是局部紧 σ -紧 T3 群,H 为正则局部可数紧群,若 $\varphi:G\to H$ 为连续满同态,则 φ 是开映射.

A.3 映射空间的拓扑

A.3.1 三种拓扑

对于集合 X 以及拓扑空间 Y,考虑从 X 到 Y 的映射构成的空间 $\mathcal{M}(X,Y)$,如果只作为集合,其上可以定义离散拓扑、平凡拓扑、余可数拓扑、余有限拓扑等,但是考虑映射的含义可知 $\mathcal{M}(X,Y)=Y^X$,因此首先可以给出两种乘积空间的拓扑:

• 乘积拓扑: 由子基

$$S_{prod} = \{ \pi_x^{-1}(B_Y(y_x, r_x)) : x \in X, y_x \in Y, r_x > 0 \}$$
(A.12)

生成,这恰好是逐点收敛拓扑 ($\mathcal{M}(X,Y),\mathcal{T}_{p.c.}$).

• 箱拓扑: 由基

$$\mathcal{B}_{box} = \left\{ \prod_{x \in X} B_Y(y_x, r_x) : y_x \in Y, r_x > 0 \right\}$$
(A.13)

生成,这在研究连续映射是并不方便.

如果 Y 为度量空间,则 Y 上的度量 d 诱导了度量

$$d_u(f,g) = \sup_{x \in X} \frac{d(f(x), g(x))}{1 + d(f(x), g(x))},$$
(A.14)

并且 $\{f_n\}$ 在 X 上一致收敛到 f 当且仅当 $\{f_n\}$ 在 $(\mathcal{M}(X,Y),d_u)$ 中度量收敛到 f , 因此可定义

定义 A.4 (一致度量/一致收敛拓扑)

称上面的 d_u 为 $\mathcal{M}(X,Y)$ 上的一致度量,由该度量诱导的拓扑 $\mathcal{T}_{u.c.}$ 称为 $\mathcal{M}(X,Y)$ 上的一致收敛拓扑.

 $\dot{\mathbf{L}}$ 一致收敛拓扑需要 Y 的度量结构,并且 $\mathcal{T}_{p.c.} \subset \mathcal{T}_{u.c.} \subset \mathcal{T}_{box}$.

命题 A.9

若 Y 为完备度量空间,则 d_u 为 $\mathcal{M}(X,Y)$ 上的完备度量.

若 X 为拓扑空间, Y 为度量空间, 令 C(X,Y) 表示二者之间连续映射的全体, 它在 $\mathcal{T}_{p,c}$ 中不是闭集, 但在 $T_{u.c.}$ 中是闭集(因为连续函数的一致极限还是连续的),因此

命题 A.10

若 X 为拓扑空间, Y 为完备度量空间, 则 $(C(X,Y),d_u)$ 为完备度量空间.

若要研究连续函数列的收敛性,则上面的三种拓扑都有缺点:逐点收敛拓扑太弱(不能保证极限函数的连 续性), 而一致拓扑与箱拓扑太强(连续性是"局部"概念, 它强于"点态", 弱于"整体"), 因此需要考虑"局 部"的一致收敛.

A.3.2 紧收敛拓扑与紧开拓扑

仿照前面三种拓扑,对X的紧集K可定义

$$B(f; K, \varepsilon) = \{ g \in \mathcal{M}(X, Y) : \sup_{x \in X} d(f(x), g(x)) < \varepsilon \}, \tag{A.15}$$

由此可引出紧收敛拓扑.

引理 A.1

设X为拓扑空间, (Y,d)为度量空间,则

是 M(X,Y) 的一个拓扑基,并且它生成的拓扑 $T_{c.c.}$ 中的收敛性等价于在所有紧集上的一致收敛性

定义 A.5 (紧收敛拓扑)

上述引理中定义的拓扑称为紧收敛拓扑,记为 $T_{c.c.}$

命题 A.11 (限制映射的连续性)

对任意 $A \subset X$, 限制映射

$$r_A: C(X,Y) \to C(A,Y), \quad f \mapsto f|_A$$
 (A.17)

关于 $T_{p.c.}$, $T_{c.c.}$, $T_{u.c.}$ 都是连续的.

证明 只需证明 $r_A: \mathcal{M}(X,Y) \to \mathcal{M}(A,Y)$ 连续,再将其限制在 C(X,Y) 即可(若设 $\iota: A \to X$ 为嵌入,则 $r_A(f) = f \circ \iota \text{ id } \text{if } r_A(C(X,Y)) \subset C(A,Y)$.

证明其连续性只需证明它将C(A,Y)中的每个子基(或基)拉回为C(X,Y)中的开集,首先考虑 $\mathcal{T}_{p.c.}$ 有

$$r_A^{-1}(\pi_x^{-1}(B^Y(y_x, r_x))) = (\pi_x \circ r_A)^{-1}(\pi_x^{-1}(B^Y(y_x, r_x))), \tag{A.18}$$

由于积拓扑是投影映射的诱导拓扑,因此 r_A 连续当且仅当

如果函数列 $\{f_n\}$ 在某个紧子集K上一致收敛到f,则f在K上是连续的,为了将f在每个紧集上的连续 性推广到全空间,需要局部紧致性.

命题 A.12

若局部紧空间 X 上的函数列 $\{f_n\} \subset C(X,Y)$ 紧收敛到 f, 则 $f \in C(X,Y)$.

证明 取 X 的紧邻域覆盖,则由 $\{f_n\}$ 在 $\mathcal{T}_{c.c.}$ 中的收敛可得其在每个紧邻域内的一致收敛,即得. 紧收敛拓扑定义要求 Y 为度量空间,对一般的拓扑空间 Y,将度量球替换为开集就能定义类似的**紧开拓扑**.

定义 A.6 (紧开拓扑)

设X,Y为拓扑空间,对任意紧集 $K \subset X$ 和开集 $V \subset Y$,记

$$S(K,V) = \{ f \in \mathcal{M}(X,Y) : f(K) \subset V \},\tag{A.19}$$

称 M(X,Y) 上由子基

$$S_{c.o.} = \{ S(K, V) : K \subset X \, \S, V \subset Y \, \mathcal{H} \} \tag{A.20}$$

生成的拓扑 $T_{c.o.}$ 为 M(X,Y) 的紧开拓扑.

命题 A.13 (紧收敛拓扑为紧开拓扑)

若Y为度量空间,则在C(X,Y)上 $\mathcal{T}_{c.o.} = \mathcal{T}_{c.c.}$

证明 注意到 $S(K, B(f, \varepsilon)) = B(f; K, \varepsilon)$.

命题 A.14 (复合的连续性)

设X,Y,Z为拓扑空间,Y为LCH空间,在紧开拓扑下,复合映射

$$\circ: C(X,Y) \times C(Y,Z) \to C(X,Z), \quad (f,g) \mapsto g \circ f \tag{A.21}$$

是连续的.

证明 根据 LCH 空间中紧集与开集的分离易得,对任意 $(f,g) \in \circ^{-1}(S(K,V))$,存在开集 U 使得 $(f,g) \in S(K,U) \times S(f(K),V) \subset \circ^{-1}(S(K,V))$.

如果 X = pt 为单点空间,则容易验证 $(C(pt,Y), \mathcal{T}_{c.o.}) \cong (Y, \mathcal{T}_Y)$,在这种观点下可得推论

推论 A.2 (赋值的连续性)

设X为LCH空间,Y为一般拓扑空间,考虑(C(X,Y), $\mathcal{T}_{c.o.}$),则赋值映射

$$e: X \times C(X,Y) \to Y, \quad (x,f) \mapsto e(x,f) = f(x) \in Y$$
 (A.22)

为连续映射.

证明 此时赋值映射恰好为复合映射 $\circ: C(pt,X) \times C(X,Y) \to C(pt,Y)$.